3.4.51 \(\int \frac {x}{\sqrt {a-b x^3} (2 (5+3 \sqrt {3}) a-b x^3)} \, dx\) [351]

Optimal. Leaf size=324 \[ -\frac {\left (2-\sqrt {3}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{2 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tan ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt {a-b x^3}}{\sqrt {2} 3^{3/4} \sqrt {a}}\right )}{3 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{6 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \sqrt [6]{a} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{3 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}} \]

[Out]

-1/12*arctan(1/2*3^(1/4)*a^(1/6)*(a^(1/3)-b^(1/3)*x)*(1+3^(1/2))*2^(1/2)/(-b*x^3+a)^(1/2))*(2-3^(1/2))*3^(1/4)
/a^(5/6)/b^(2/3)*2^(1/2)-1/18*arctan(1/6*(1-3^(1/2))*(-b*x^3+a)^(1/2)*3^(1/4)*2^(1/2)/a^(1/2))*(2-3^(1/2))*3^(
1/4)/a^(5/6)/b^(2/3)*2^(1/2)-1/36*arctanh(1/2*3^(1/4)*a^(1/6)*(a^(1/3)-b^(1/3)*x)*(1-3^(1/2))*2^(1/2)/(-b*x^3+
a)^(1/2))*(2-3^(1/2))*3^(3/4)/a^(5/6)/b^(2/3)*2^(1/2)-1/18*arctanh(1/2*3^(1/4)*a^(1/6)*(2*b^(1/3)*x+a^(1/3)*(1
+3^(1/2)))*2^(1/2)/(-b*x^3+a)^(1/2))*(2-3^(1/2))*3^(3/4)/a^(5/6)/b^(2/3)*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 324, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {500} \begin {gather*} -\frac {\left (2-\sqrt {3}\right ) \text {ArcTan}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{2 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \text {ArcTan}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt {a-b x^3}}{\sqrt {2} 3^{3/4} \sqrt {a}}\right )}{3 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{6 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \sqrt [6]{a} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{3 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(Sqrt[a - b*x^3]*(2*(5 + 3*Sqrt[3])*a - b*x^3)),x]

[Out]

-1/2*((2 - Sqrt[3])*ArcTan[(3^(1/4)*(1 + Sqrt[3])*a^(1/6)*(a^(1/3) - b^(1/3)*x))/(Sqrt[2]*Sqrt[a - b*x^3])])/(
Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 - Sqrt[3])*ArcTan[((1 - Sqrt[3])*Sqrt[a - b*x^3])/(Sqrt[2]*3^(3/4)*Sqrt
[a])])/(3*Sqrt[2]*3^(3/4)*a^(5/6)*b^(2/3)) - ((2 - Sqrt[3])*ArcTanh[(3^(1/4)*(1 - Sqrt[3])*a^(1/6)*(a^(1/3) -
b^(1/3)*x))/(Sqrt[2]*Sqrt[a - b*x^3])])/(6*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3)) - ((2 - Sqrt[3])*ArcTanh[(3^(1/4)*
a^(1/6)*((1 + Sqrt[3])*a^(1/3) + 2*b^(1/3)*x))/(Sqrt[2]*Sqrt[a - b*x^3])])/(3*Sqrt[2]*3^(1/4)*a^(5/6)*b^(2/3))

Rule 500

Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3], r = Simplify[(b
*c - 10*a*d)/(6*a*d)]}, Simp[(-q)*(2 - r)*(ArcTan[(1 - r)*(Sqrt[a + b*x^3]/(Sqrt[2]*Rt[a, 2]*r^(3/2)))]/(3*Sqr
t[2]*Rt[a, 2]*d*r^(3/2))), x] + (-Simp[q*(2 - r)*(ArcTan[Rt[a, 2]*Sqrt[r]*(1 + r)*((1 + q*x)/(Sqrt[2]*Sqrt[a +
 b*x^3]))]/(2*Sqrt[2]*Rt[a, 2]*d*r^(3/2))), x] - Simp[q*(2 - r)*(ArcTanh[Rt[a, 2]*Sqrt[r]*((1 + r - 2*q*x)/(Sq
rt[2]*Sqrt[a + b*x^3]))]/(3*Sqrt[2]*Rt[a, 2]*d*Sqrt[r])), x] - Simp[q*(2 - r)*(ArcTanh[Rt[a, 2]*(1 - r)*Sqrt[r
]*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(6*Sqrt[2]*Rt[a, 2]*d*Sqrt[r])), x])] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b*c - a*d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && PosQ[a]

Rubi steps

\begin {align*} \int \frac {x}{\sqrt {a-b x^3} \left (2 \left (5+3 \sqrt {3}\right ) a-b x^3\right )} \, dx &=-\frac {\left (2-\sqrt {3}\right ) \tan ^{-1}\left (\frac {\sqrt [4]{3} \left (1+\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{2 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tan ^{-1}\left (\frac {\left (1-\sqrt {3}\right ) \sqrt {a-b x^3}}{\sqrt {2} 3^{3/4} \sqrt {a}}\right )}{3 \sqrt {2} 3^{3/4} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \left (1-\sqrt {3}\right ) \sqrt [6]{a} \left (\sqrt [3]{a}-\sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{6 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}-\frac {\left (2-\sqrt {3}\right ) \tanh ^{-1}\left (\frac {\sqrt [4]{3} \sqrt [6]{a} \left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+2 \sqrt [3]{b} x\right )}{\sqrt {2} \sqrt {a-b x^3}}\right )}{3 \sqrt {2} \sqrt [4]{3} a^{5/6} b^{2/3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.
time = 10.05, size = 83, normalized size = 0.26 \begin {gather*} \frac {x^2 \sqrt {1-\frac {b x^3}{a}} F_1\left (\frac {2}{3};\frac {1}{2},1;\frac {5}{3};\frac {b x^3}{a},\frac {b x^3}{10 a+6 \sqrt {3} a}\right )}{\left (20 a+12 \sqrt {3} a\right ) \sqrt {a-b x^3}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(Sqrt[a - b*x^3]*(2*(5 + 3*Sqrt[3])*a - b*x^3)),x]

[Out]

(x^2*Sqrt[1 - (b*x^3)/a]*AppellF1[2/3, 1/2, 1, 5/3, (b*x^3)/a, (b*x^3)/(10*a + 6*Sqrt[3]*a)])/((20*a + 12*Sqrt
[3]*a)*Sqrt[a - b*x^3])

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.36, size = 509, normalized size = 1.57

method result size
default \(\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}-6 \sqrt {3}\, a -10 a \right )}{\sum }\frac {\left (a \,b^{2}\right )^{\frac {1}{3}} \sqrt {-\frac {i b \left (2 x +\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (3 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b +4 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}-3 i \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}-6 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -2 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b -6 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+6 i \left (a \,b^{2}\right )^{\frac {2}{3}}-2 \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+3 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b +3 \left (a \,b^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {-\frac {i \left (x +\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {-2 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, b +i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+4 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} b -2 i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha +2 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, a b -3 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -2 i a b -2 \sqrt {3}\, a b +3 a b}{6 b a}, \sqrt {-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \sqrt {-b \,x^{3}+a}}\right )}{27 b^{3} a}\) \(509\)
elliptic \(\frac {i \sqrt {2}\, \left (\munderset {\underline {\hspace {1.25 ex}}\alpha =\RootOf \left (b \,\textit {\_Z}^{3}-6 \sqrt {3}\, a -10 a \right )}{\sum }\frac {\left (a \,b^{2}\right )^{\frac {1}{3}} \sqrt {-\frac {i b \left (2 x +\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{2 \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {b \left (x -\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{-3 \left (a \,b^{2}\right )^{\frac {1}{3}}-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {2}\, \sqrt {\frac {i b \left (2 x +\frac {-i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}+\left (a \,b^{2}\right )^{\frac {1}{3}}}{b}\right )}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}\, \left (3 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b +4 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}-3 i \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}-6 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b -2 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}\, b -6 b^{2} \underline {\hspace {1.25 ex}}\alpha ^{2}+6 i \left (a \,b^{2}\right )^{\frac {2}{3}}-2 \left (a \,b^{2}\right )^{\frac {2}{3}} \sqrt {3}+3 \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha b +3 \left (a \,b^{2}\right )^{\frac {2}{3}}\right ) \EllipticPi \left (\frac {\sqrt {3}\, \sqrt {-\frac {i \left (x +\frac {\left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \frac {-2 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} \sqrt {3}\, b +i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+4 i \left (a \,b^{2}\right )^{\frac {1}{3}} \underline {\hspace {1.25 ex}}\alpha ^{2} b -2 i \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha +2 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha \sqrt {3}+i \sqrt {3}\, a b -3 \left (a \,b^{2}\right )^{\frac {2}{3}} \underline {\hspace {1.25 ex}}\alpha -2 i a b -2 \sqrt {3}\, a b +3 a b}{6 b a}, \sqrt {-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{2 \underline {\hspace {1.25 ex}}\alpha \sqrt {-b \,x^{3}+a}}\right )}{27 b^{3} a}\) \(509\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(-b*x^3+2*a*(5+3*3^(1/2)))/(-b*x^3+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/27*I/b^3/a*2^(1/2)*sum(1/_alpha*(a*b^2)^(1/3)*(-1/2*I*b*(2*x+1/b*(I*3^(1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(a
*b^2)^(1/3))^(1/2)*(b*(x-1/b*(a*b^2)^(1/3))/(-3*(a*b^2)^(1/3)-I*3^(1/2)*(a*b^2)^(1/3)))^(1/2)*(1/2*I*b*(2*x+1/
b*(-I*3^(1/2)*(a*b^2)^(1/3)+(a*b^2)^(1/3)))/(a*b^2)^(1/3))^(1/2)/(-b*x^3+a)^(1/2)*(3*I*(a*b^2)^(1/3)*_alpha*3^
(1/2)*b+4*b^2*_alpha^2*3^(1/2)-3*I*(a*b^2)^(2/3)*3^(1/2)-6*I*(a*b^2)^(1/3)*_alpha*b-2*(a*b^2)^(1/3)*_alpha*3^(
1/2)*b-6*b^2*_alpha^2+6*I*(a*b^2)^(2/3)-2*(a*b^2)^(2/3)*3^(1/2)+3*(a*b^2)^(1/3)*_alpha*b+3*(a*b^2)^(2/3))*Elli
pticPi(1/3*3^(1/2)*(-I*(x+1/2/b*(a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(a*b^2)^(1/3))*3^(1/2)*b/(a*b^2)^(1/3))^(1/2),1/
6/b*(-2*I*(a*b^2)^(1/3)*_alpha^2*3^(1/2)*b+I*(a*b^2)^(2/3)*_alpha*3^(1/2)+4*I*(a*b^2)^(1/3)*_alpha^2*b-2*I*(a*
b^2)^(2/3)*_alpha+2*(a*b^2)^(2/3)*_alpha*3^(1/2)+I*3^(1/2)*a*b-3*(a*b^2)^(2/3)*_alpha-2*I*a*b-2*3^(1/2)*a*b+3*
a*b)/a,(-I*3^(1/2)/b*(a*b^2)^(1/3)/(-3/2/b*(a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(a*b^2)^(1/3)))^(1/2)),_alpha=RootOf(
b*_Z^3-6*3^(1/2)*a-10*a))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5+3*3^(1/2)))/(-b*x^3+a)^(1/2),x, algorithm="maxima")

[Out]

-integrate(x/((b*x^3 - 2*a*(3*sqrt(3) + 5))*sqrt(-b*x^3 + a)), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 5036 vs. \(2 (218) = 436\).
time = 24.99, size = 5036, normalized size = 15.54 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5+3*3^(1/2)))/(-b*x^3+a)^(1/2),x, algorithm="fricas")

[Out]

1/6*sqrt(3)*(1/1944)^(1/6)*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)*arctan(1/3*(3*sqrt(-b*x^3 + a)*(108*(1/194
4)^(5/6)*(265*a^4*b^4*x^3 - 1978*a^5*b^3 + sqrt(3)*(153*a^4*b^4*x^3 - 1142*a^5*b^3))*(-(1351*sqrt(3) - 2340)/(
a^5*b^4))^(5/6) + sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x + 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) - 2340)/(a^5*b^4)) - (1/
1944)^(1/6)*(5*sqrt(3)*a*b*x^2 + 9*a*b*x^2)*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)) - (6*(1/9)^(1/3)*(7*a^2*
b^2*x^3 - 7*a^3*b + 4*sqrt(3)*(a^2*b^2*x^3 - a^3*b))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/3) - sqrt(3)*(b*x^4
 - a*x) - 3*sqrt(-b*x^3 + a)*(108*(1/1944)^(5/6)*(265*a^4*b^4*x^3 + 1448*a^5*b^3 + sqrt(3)*(153*a^4*b^4*x^3 +
836*a^5*b^3))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(5/6) - sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x + 71*a^3*b^2*x)*sqrt(
-(1351*sqrt(3) - 2340)/(a^5*b^4)) + (1/1944)^(1/6)*(5*sqrt(3)*a*b*x^2 + 9*a*b*x^2)*(-(1351*sqrt(3) - 2340)/(a^
5*b^4))^(1/6)))*sqrt((b^4*x^12 - 100*a*b^3*x^9 + 240*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(15
45*a^4*b^6*x^10 - 12492*a^5*b^5*x^7 - 10512*a^6*b^4*x^4 - 2112*a^7*b^3*x + 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*
a^5*b^5*x^7 - 1518*a^6*b^4*x^4 - 304*a^7*b^3*x))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(2/3) - 6*(1/9)^(1/3)*(26*
a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 64*a^5*b^2*x^2 + 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8
 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/3) - 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*
b^2*x^6 - 15*a^3*b*x^3 + 8*a^4) + 2*sqrt(-b*x^3 + a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5
 + 568*a^7*b^4*x^2 + sqrt(3)*(2131*a^5*b^6*x^8 + 1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) - 2340)/
(a^5*b^4))^(5/6) + 2*sqrt(1/6)*(123*a^3*b^5*x^9 + 5112*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 + sqrt(3)*
(71*a^3*b^5*x^9 + 2952*a^4*b^4*x^6 + 2280*a^5*b^3*x^3 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) - 2340)/(a^5*b^4)) -
 3*(1/1944)^(1/6)*(5*a*b^4*x^10 - 12*a^2*b^3*x^7 - 72*a^3*b^2*x^4 + 160*a^4*b*x + 3*sqrt(3)*(a*b^4*x^10 - 4*a^
2*b^3*x^7 + 8*a^3*b^2*x^4 - 32*a^4*b*x))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 +
 384*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)))/(b*x^4 - a*x)) + 1/6*sqrt(3)*(1/1944)^(1/6)*(-(1351*sqrt(3) - 234
0)/(a^5*b^4))^(1/6)*arctan(1/3*(3*sqrt(-b*x^3 + a)*(108*(1/1944)^(5/6)*(265*a^4*b^4*x^3 - 1978*a^5*b^3 + sqrt(
3)*(153*a^4*b^4*x^3 - 1142*a^5*b^3))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(5/6) + sqrt(1/6)*(41*sqrt(3)*a^3*b^2*
x + 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) - 2340)/(a^5*b^4)) - (1/1944)^(1/6)*(5*sqrt(3)*a*b*x^2 + 9*a*b*x^2)*(-(1
351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)) + (6*(1/9)^(1/3)*(7*a^2*b^2*x^3 - 7*a^3*b + 4*sqrt(3)*(a^2*b^2*x^3 - a^3
*b))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/3) - sqrt(3)*(b*x^4 - a*x) + 3*sqrt(-b*x^3 + a)*(108*(1/1944)^(5/6)
*(265*a^4*b^4*x^3 + 1448*a^5*b^3 + sqrt(3)*(153*a^4*b^4*x^3 + 836*a^5*b^3))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))
^(5/6) - sqrt(1/6)*(41*sqrt(3)*a^3*b^2*x + 71*a^3*b^2*x)*sqrt(-(1351*sqrt(3) - 2340)/(a^5*b^4)) + (1/1944)^(1/
6)*(5*sqrt(3)*a*b*x^2 + 9*a*b*x^2)*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)))*sqrt((b^4*x^12 - 100*a*b^3*x^9 +
 240*a^2*b^2*x^6 - 832*a^3*b*x^3 + 448*a^4 - 6*(1/9)^(2/3)*(1545*a^4*b^6*x^10 - 12492*a^5*b^5*x^7 - 10512*a^6*
b^4*x^4 - 2112*a^7*b^3*x + 4*sqrt(3)*(223*a^4*b^6*x^10 - 1803*a^5*b^5*x^7 - 1518*a^6*b^4*x^4 - 304*a^7*b^3*x))
*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(2/3) - 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5
 + 64*a^5*b^2*x^2 + 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqr
t(3) - 2340)/(a^5*b^4))^(1/3) - 32*sqrt(3)*(a*b^3*x^9 + 6*a^2*b^2*x^6 - 15*a^3*b*x^3 + 8*a^4) - 2*sqrt(-b*x^3
+ a)*(1944*(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5*x^5 + 568*a^7*b^4*x^2 + sqrt(3)*(2131*a^5*b^6*x^8 +
 1672*a^6*b^5*x^5 + 328*a^7*b^4*x^2))*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(5/6) + 2*sqrt(1/6)*(123*a^3*b^5*x^9
+ 5112*a^4*b^4*x^6 + 3960*a^5*b^3*x^3 + 768*a^6*b^2 + sqrt(3)*(71*a^3*b^5*x^9 + 2952*a^4*b^4*x^6 + 2280*a^5*b^
3*x^3 + 448*a^6*b^2))*sqrt(-(1351*sqrt(3) - 2340)/(a^5*b^4)) - 3*(1/1944)^(1/6)*(5*a*b^4*x^10 - 12*a^2*b^3*x^7
 - 72*a^3*b^2*x^4 + 160*a^4*b*x + 3*sqrt(3)*(a*b^4*x^10 - 4*a^2*b^3*x^7 + 8*a^3*b^2*x^4 - 32*a^4*b*x))*(-(1351
*sqrt(3) - 2340)/(a^5*b^4))^(1/6)))/(b^4*x^12 - 40*a*b^3*x^9 + 384*a^2*b^2*x^6 + 320*a^3*b*x^3 + 64*a^4)))/(b*
x^4 - a*x)) + 1/12*(1/1944)^(1/6)*(-(1351*sqrt(3) - 2340)/(a^5*b^4))^(1/6)*log(-(b^4*x^12 + 68*a*b^3*x^9 + 168
*a^2*b^2*x^6 - 544*a^3*b*x^3 + 64*a^4 + 6*(1/9)^(2/3)*(2799*a^4*b^6*x^10 + 11556*a^5*b^5*x^7 + 7776*a^6*b^4*x^
4 + 1440*a^7*b^3*x + 8*sqrt(3)*(202*a^4*b^6*x^10 + 834*a^5*b^5*x^7 + 561*a^6*b^4*x^4 + 104*a^7*b^3*x))*(-(1351
*sqrt(3) - 2340)/(a^5*b^4))^(2/3) - 6*(1/9)^(1/3)*(26*a^2*b^5*x^11 + 498*a^3*b^4*x^8 + 384*a^4*b^3*x^5 + 64*a^
5*b^2*x^2 + 3*sqrt(3)*(5*a^2*b^5*x^11 + 96*a^3*b^4*x^8 + 72*a^4*b^3*x^5 + 16*a^5*b^2*x^2))*(-(1351*sqrt(3) - 2
340)/(a^5*b^4))^(1/3) + 64*sqrt(3)*(a*b^3*x^9 - 3*a^2*b^2*x^6 + 3*a^3*b*x^3 - a^4) + 2*sqrt(-b*x^3 + a)*(1944*
(1/1944)^(5/6)*(3691*a^5*b^6*x^8 + 2896*a^6*b^5...

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x}{- 6 \sqrt {3} a \sqrt {a - b x^{3}} - 10 a \sqrt {a - b x^{3}} + b x^{3} \sqrt {a - b x^{3}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x**3+2*a*(5+3*3**(1/2)))/(-b*x**3+a)**(1/2),x)

[Out]

-Integral(x/(-6*sqrt(3)*a*sqrt(a - b*x**3) - 10*a*sqrt(a - b*x**3) + b*x**3*sqrt(a - b*x**3)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(-b*x^3+2*a*(5+3*3^(1/2)))/(-b*x^3+a)^(1/2),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:index.cc index_m
operator + Error: Bad Argument Value

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} -\int \frac {x}{\sqrt {a-b\,x^3}\,\left (b\,x^3-2\,a\,\left (3\,\sqrt {3}+5\right )\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-x/((a - b*x^3)^(1/2)*(b*x^3 - 2*a*(3*3^(1/2) + 5))),x)

[Out]

-int(x/((a - b*x^3)^(1/2)*(b*x^3 - 2*a*(3*3^(1/2) + 5))), x)

________________________________________________________________________________________